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Chapter 1

Introduction

The notes were typed up by me, John Frerpldhn@ r em i n. de.

These notes are based on the first three chapters of the paathbematics course
“Logic, Computation and Set Theory” given by Dr Leader in Gaitige in Michaelmas
2003. These notes are not connected to Dr Leader in any winerlf are any mistakes
in them, it is more than very likely that they are my fault, DotLeader’s.

Furthermore these notes are very definitely no substitutadtually going to Dr
Leader’s lectures (which are very good), because they dmaloide all of the material
and especially examples covered, or any of the asides. idddity, the material on
computation and set theory is not included in these notes.

Finally, | would like to thank Dr Leader for taking such cacepolish his crystal-
clear lectures, and for being a very patient supervisor.
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Chapter 2

Propositional logic

Definition 2.1 (Primitive propositions) P = {p1,p2,ps,- - - } is the set of primitive
propositions.

Definition 2.2 (Proposition) A proposition is a subset of strings of symbols from the
alphabet(a )a =, J~7p17p27 Tt

Definition 2.3 (Language) The languagéd. (or L(P)) is the set of propositions
1. PCL
2. 1lel
3. ifp,ge L, (p=q) €L
L, is the set of propositions of length n.

-p (p=1) “not p”
Definition 2.4 (Shorthands) pVvgq ((-p) = q) “porg”
pAg —(p=(~g) “pandq’

Definition 2.5 (Valuation) A valuation is a functionv : L — {0,1}.

1 v(l)=0

0 ifv(p)=1v(¢) =0
1 otherwise

Zv@éﬁ{

Theorem 2.6(Valuations agreeing on the basic propositions are the yalhealua-
tionsv, v’ havev(p) = v'(p) for all p € P thenv = v’.

Proof. v = v' on Ly. If v(p) = v'(p) andwv(q) = v'(q) thenv(p = q) = v'(p = q)
so by inductionvL,,.
O

Theorem 2.7 (A function defined on the primitive propositions can be egied to a
valuation) Givenw : P — {0, 1} there exists a valuation such that(p) = w(p) for
allp e P.

Proof. Letv(p) = w(p) forall p € P and letv(L) = 0. Extend.
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Definition 2.8 (Model). If v(p) = 1, pis true inv. v is a model op.
Definition 2.9 (Tautology) If v(p) = 1 for all valuationsv thenp is a tautology.|= p.

Observation 2.10(Techniques for proving something is a tautolagiraw a truth
table, also note that if(p = ¢) = 0 thenp = 1 andgq = 0.

Definition 2.11 (Semantic implication, entails)f S C L, ¢ € L andv(s) = 1 for all
s € S mean(t) = 1 thenS entails or semantically implies(S = t). That is, every
model ofS is a model oft.



Chapter 3

Syntactic implication

Definition 3.1 (Axioms). 1. p = (¢ = p) istrueVp,q € L
2. p=@=r)=((r=9=@=r)qrel
3. (—p)=>pVpel

Observation 3.2(Consistent with semantic implicatianpll the axioms are tautolo-
gies.

Definition 3.3 (Modus ponens)Fromp andp = ¢ can deduce,.

Definition 3.4 (Proof). LetS C L be called the set of hypotheses or premises. A proof
of a conclusiont € L from S'is a finite set4, - - - , t,, with ¢t,, = ¢ and each; is either

1. an axiom
2. amember of
3. suchthat there exigtk < m : t,, = (t; = t)

ThenS + t (S proves or syntactically implies). If @ - ¢ thent is a theorem
(writtent ¢t).

Theorem3.5. (p = q,q=71)F (p=7)

1 p=(@=r)=((p=q9=(@=r) Axiom2

2 g=r Hypothesis

3 (¢g=r)=@m=(@=r) Axiom 1
Proof. 4 p=(¢g=r) Modus ponens on 2, 3

5 p=q)=@pm=r) Modus ponens on 4,1

6 p=gq Hypothesis

7 p=>r Modus ponens on 6,5

O
Theorem 3.6.
= (p=p)
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1 p=(p=p)=p)=((p=@=p)=@P=p) Axiom2
2 p=(p=p =0p Axoim 1
Proof. 3 (p=(p=p)) = (p=p) Modus ponens on 2,1
4 p=(p=p) Axiom 1
5 p=p Modus ponens on 4,3
O

Theorem 3.7(Deduction theorem)LetS C L, p,q € L. ThenS + (p = q) iff
SUIplFq.

Proof. S+ (p = ¢). Given a proof ofp = ¢ from S add lines
p Hypothesis
g Modus ponens
Thus provingg from S U [p].
SUlpltq
Letty, ta, ..., t, be a proof ofy from S U [p]. Show thatS + (p = ¢;) for everyi.
If t; = p certainlyS - (p = p) ask (p = p).
t;  Axiom or Hypothesis
Otherwise ift; isan axiomot; € S,write t; = (p=1t;) Axiom1
p=t; Modus ponens
SoSF (p=t;).
Otherwiset; was got from Modus Ponens, i.e. there eyisuch that; = ¢;. By
induction oni assumes - (p = t;) andS - (p = (t; = t;)) SO write
=t =t)=(p=t;)=>{p=>t) Axiom2
(p=1t;)= (p=1t;) Modus ponens
p =t; Modus ponens
O

Example 3.8. To show{p = ¢,q = r} F (p = q) show{p = ¢,q = r,p} F r using
modus ponens twice.

Theorem 3.9(Soundness theorem)etS C L, t € L thenS + ¢ impliesS |= t.

Proof. Given a valuatiorw that is a model forS, i.e. v(s) = 1¥s € S we want
v(t) = 1.

Certainly axioms (are tautologies) and element§ afe true. Also modus ponens:
if v(p) = 1 andv(p = ¢) = 1thenv(q) = 1. Sov(p) = 1 for all p in a proof of¢
from S.

O

Definition 3.10. S C L is inconsistent ifS - L. Otherwise it is consistent.

Definition 3.11 (Deductively closed) A setS C L is deductively closed if it contains
all its consequences. § + pthenp € S.

Theorem 3.12(S consistent implies it has a modellet S C L be consistent. Thefi
has a model.

Proof. Key idea: the theorem fails if bofhand—p are inS. So try to extend> keeping
it consistent to swallow up one pfor —p for eachp € L.

Claim. For any consistet C L and anyp € L at least one ofS U {p} and
S U {—p} is consistent.



Proof of claim. Suppos8 U {p} is inconsistent. Thep+ L. SoS+ (p = 1) so
S andS U {—-p} prove the same things sbU {—p} is consistent.

L is countable. Lety,t,,t3,--- be an ordering of.. LetSy = S. LetS, 1 be
Sn U {t,} or S, U{~t,} choosing one which is consistent. L&t= U,;>15,. Then
for eachp € L at least one op € S or —p € S. S is consistent because proofs are
finite. Also .S deductively closed. If ¢ S thenS does not prove (as—p € S).

1 ifpeS . .
P .. wisavaluation. Proofv(L) = 0.
0 otherwise

If v(p) = 1,v(q) = 0thenp € S,q¢ S. So(p = q) ¢ Ssov(p = q) = 0. If
v(g) = 1theng - (p = q) so(p = q) € Ssov(p=¢q) = 1. If v(p) =0thenp ¢ S
so—p € S. Enough to show-p = (p = q). Thatis,(p, —p) I- q.
p = 1L Hypothesis
1 = --¢ Axioml
(-—q) = q Axiom3
Sov(p = ¢) = 1. Sow is a valuation. So there is a model {8r

Definev: L — {0,1} : v(p) =

O

Observation 3.13. Previous theorem used fact th&tis countable (so thak is count-
able) but this is not necessary by Zorn’s lemma (next chapter

Corollary 3.14 (Adequacy theorem)Let.S C L, t € L. ThenS |= t impliesS | ¢.

Proof. If S |=tthenS U (—t) = L (has no model) s6' U (—¢t) F L (is inconsistent).
S+ ((—=t) = 1) by deduction theorents - (—=—t). So.S F ¢ by axiom.
O

Theorem 3.15(Completeness theorem for propositional logitetS C L, t € L.
ThenS = tiff S F t.

Proof. Adequacy and soundness theorems.

3.0.1 Two consequences of completeness

Theorem 3.16(Compactness theoremhetS C L,¢t € L : S = t. Then some finite
S’ C ShasS’' =t.

Proof. If S =t thenS F ¢. But proofs are finite so some finit¢ C S hassS’ + ¢.
ThenS’ |=¢.
O

Corollary 3.17 (Equivalent formulation of compactnesdf every finite subset of
has a model, thef is consistent.

Proof. There is no finite subset &f, such thatS - L. SoS # L.
O

Theorem 3.18(Decidability theorem) There is an algorithm to determine, for any
S C L andt € L whether or notS - ¢.
Note that this is not obvious at all.

Proof. Trivial by replacing- with =. To decide ifS |= ¢ just write down a truth table.
O
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Chapter 4

Posets and Zorn’s lemma

Definition 4.1 (Poset) A partially ordered set or poset is a paiX, <) whereX is a
set and< is a relation onX satisfying:

1. Reflexivityx < z, Vx € X.
2. Antisymmetry: it <y andy < zthenz =y, Vz,y € X.
3. Transitivity: ifz < y andy < z thenz < z,Vz,y,z € X.

Writex < y for z < y andx # y. Alternatively interms ok, Az :z <z, z <y
andy < z impliesz < z.

Example 4.2. (N, <), (Q, <) and(RR, <) are posets (in fact total orders).
Example 4.3. (N, |) where |y meanse dividesy) is not a poset.
Example 4.4. Saset.X CP(S)withA < Bif AC B.

Definition 4.5 (Hasse diagram)A Hasse diagram for a poset is a drawing of the
points in the poset with an upwards line franto y if y coverse (meaningx < y and
Az ix<z<y).

Sometimes a Hasse diagram can be drawn for an infinite poseexampleN, <)
but (Q, <) has an empty Hasse diagram.

Definition 4.6 (Chain) A chain in a posefX is a setA C X that is totally ordered
(Va,y € A:haver <yory < x).

For example in(R, <) any subset, likéQ, <) is a chain. Note that a chain need
not be countable.

Definition 4.7 (Antichain) An antichain is a subsed C X in which no two distinct
elements are comparablezx, y : z # y, neitherx < y nory < z.

Definition 4.8 (Upper bound) For S C X andx € X, sayz is an upper bound fof
ify<aVyes.

Definition 4.9 (Least upper bound, supremumy). z is a least upper bound for
S C X if z is an upper bound fo6 and every upper bounglfor S satisfiesr < y.
Clearly unique if it exists. Write = AS = sup S the supremum or join of.

Definition 4.10 (Complete) A poset is complete if every set has a supremum.

9
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Observation 4.11. Every complete posef has a greatest element, X and a least
elementA(.

Definition 4.12 (Monotone, order preservingA functionf : X — X, X a poset, is
monotone or order preservingif < y impliesf(z) < f(y).

Theorem 4.13(Knaster-Tarski fixed point theorem)X a complete posef, : X — X
order preserving. Theyf has a fixed point.

Proof. Let E = {z € X : 2 < f(z)}. PossiblyE = .

Claim. If x € Ethenf(x) € E. Proof.z < f(z) sof(x) < f(f(z)) asf order
preserving. Sq(z) € E.

Lets = AFE.

Claim. s € E. True if f(s) an upper bound foE (sos < f(s)). fz € E,z <s
sof(z) < f(s). Butz € Esox < f(x) < f(s). Sof(s) is an upper bound foE.

So f(s) in E by first claim. Sof(s) < s but second claim showed < f(s) so
f(s) =s.

O

Corollary 4.14 (Schibder-Bernstein theorem)4, B have injectionsf : A — B and
g : B— AthenA, B biject.

Proof. Want partitionsd = P U ) andB = R U S such thatf, bijects P with R and
gs bijectsS with Q.
Then define obvious bijectioh : A — B by takingh = f on P andh = g~ ! on

Q.

SetP C A: A\¢g(B\ f(P))=P,R= f(P),S=B\R,Q=g(S). Consider
(X =P(A),C). X complete. Defind : X — X. 0(P) = A\ g(B\ f(P)). Thend
is order preserving so it has a fixed point by Knaster-Tarski.

O

Definition 4.15 (Chain-complete) A (non-empty) poseX is chain-complete if every
non-empty chain has a supremum.

Observation 4.16. Not all functions on chain-complete posets have fixed pofny
function on an anti-chain is order preserving.

Observation 4.17. The non-empty condition is a little pedantic but necessary.

Definition 4.18 (Inflationary) f: X — X isinflationary ifx < f(z) Vo € X.
Not necessarily related to order preserving.

Theorem 4.19(Bourbaki-Witt theorem) X is a chain-complete posef, : X — X
inflationary. Thenf has a fixed point.

Proof. This proof is like battling Godzilla on a tightrope, it haslie carefully chore-
ographed. Although the theorem seems fairly plausiblegstrhany big consequences.
Fix zp € X. SayA C X closed if

l.xpe A
2. x € Aimpliesf(z) € A

3. C anon-empty chain ial impliesAC € A.
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Note that any intersection of closed sets is closed.

Let E' =N ,closed] is closed. Therefore ifl C E thenA = E.

AssumeF is a chain. Lets = AE. Thens € FE asFE is closed. Therefore
f(s) € E. Sof(s) <s.Sof(s)=sasf inflationary. So done.

Claim. E is a chain.

Sayz € Eisnormal ifvy € E : y < a thenf(y) < z.

There are two properties of normality we want prove. Alle E are normal.
Secondly, it should satisfy the condition we might natyrdiscribe as “normal”: it
normal thernvy € F eithery < z ory > f(x).

Once we have done this, we are finished,y € F,y < xzory > f(z) > z. So
Eis a chain.

Claim. If z normal theri'y € E eithery < z ory > f(z).

Proof of claim. LetA = {y € £ : y <z ory > f(x)}. Will show A is closed.
Any closed subset of is F so A closed impliesdA = E.

l.xge A xg <z (Vx € E).

2. Giveny € Awe needf(y) € A. Sohavey < zory > f(x) and wantf(y) < z
or f(y) = f(x).
If y < zthenf(y) <z asx is normal.
If y =« thenf(y) > f(x).
If y > f(z) thenf(y) >y > f(x).

Sof(y) € A.

3. Given a (non-empty) chaifi C A, wants = AA € A.
If all y € C havey < x then certainlys < x because a supremum. Otherwise

somey € C hasy > x and noty < x soy > f(z) asy € A. Sos > y > f(x).
Sos € A.

S0 A closed, saA closed subset of smallest possible closedtssb A = E.
Claim. Everyx € E is normal.
Proof of claim. LetN = {x € E : = is normal}. We will show thatV is closed so

N=F.
N is closed:

1. Noy € F hasy < xg. S0xg is normal,xzg € N.

2. Givenz normal wantf(z) normal. So must show < f(z) implies f(y) <
f(x). By first claimy < f(x) impliesy < z. Soy = zory < z. So
fly) = f(z)or f(y) <z < f(x) (because: is normal).

3. Given a (non-empty) chai@ C N needs = AC' € N. That is, we need that if
y<sthenf(y) <sVyeE.

Fory < s cannot havg > = Va € C (definition of supremum). So somec C
has noty > z, soy < z by the first claim. S¢f (y) < z (x normal) so certainly

fly) <s.
SoN closed saV = E. SoF is a chain.
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Observation 4.20. “Now forget the proof” - Dr Leader

Definition 4.21 (Maximal element of a poset)Given a poseX an element is maxi-
mal if noy € X hasy > =.

Corollary 4.22 (Every chain-complete poset has a maximal elemeBtery chain-
complete poset has a maximal element.

Observation 4.23. Very non-obvious theorem which trivially implies Bourb&itt (z
maximal impliesf (z) = x).

Proof. By contradiction. For each € X havez € X with £ > 2. Then the function
x — Z is inflationary. So it has a fixed point. Contradiction.
O

Lemma 4.24(One important chain-complete posebet X be any poset and lg? be
the collection of all chains ok ordered by inclusion. TheR is chain complete.

Proof. Let {C; : i € I} be a chain inP. C; is a chain inX for all i € I. Note that/
need not be countable. Furthér j € I C; C C; orC; C C;.
Now letC = U, C;. C'is clearly a least upper bound fo€; }. We need to show
that it is a chain.
Letz,y € C. So3i,j : « € C;andy € C;. SoC; C C;orC; C C;. Soz,y
related. Sa” a chain.
O

Corollary 4.25 (Kuratowski’s lemma) Every posefX has a maximal chain.

Proof. The set of chains ok is a chain-complete poset.
O

Corollary 4.26 (Zorn’s lemma) Let X be a (hon-empty) poset in which every chain
has an upper bound. TheXi has a maximal element.

Proof. Let C' be a maximal chain inX. Letxz be an upper bound fat'. Thenz is
maximal. Ify > x thenC U {y} is a chain properly containing. Contradiction.
O

Observation 4.27. Non-emptiness actually not needed as it follows from thelition
that every chain has an upper bound.

Corollary 4.28 (Every vector spac® has a basis)Every vector spack” has a basis.

Proof. Let X = {A C V : A is linearly independen} ordered by inclusion. We
seek the existence of maximal elemeht X using Zorn’s lemma. Then we are done
because ifA does not spaly it is not maximal.

1. ( is linearly independent. Shec X. SoX # (.

2. Givenachaif{ 4; : i € I} in X we seek an upper bourfl LetS = U;c/ A;.
ThenS D A; Vi so we just need € X (that is,S linearly independent).

Supposé\iz1+Asxo+- -+ Az, = 0forsomery,--- ,x, € Aandi, -, A,

not all zero. Haved,, € X such that4,, contains all ther; becauseX is a
chain. But this contradictd,,, being linearly independent. S X. So every
chain has an upper bound.
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O

Corollary 4.29 (Completeness theorem for L(P) when the set P of primitiappsi-
tions may be uncountable)etS C L(P) for any P. ThenS consistent implie$' has
a model.

Proof. WantS O S, that is consistent, withe S or # € S forall t € L. Then done
by settingu(t) = x5(¢).

Try to get a maximal consisteft > S. Then for anyt € L haveSU{t} or SU{ £}
consistent. S& satisfies € Sor € Sforallt € L.

ThusletX ={T C L:T 2 S,T consistent.

We want to use Zorn's lemma to show tlfahas a maximal element.

1. X # () sinceS € X.

2. Given a non-empty chaifi7; : ¢ € I} in X. Seek an upper bourifl. Let
T = U;e/T;. ThenT D T; Vi. Just need” € X.

S CTasS CT;Vi(andl # 0).
Claim. T consistent.

Proof of claim. Suppos& + L. Then have,--- ,t, € T with {¢1, -+ ,t,}
inconsistent. Have; € T;, for somei; € I. But one of theT;, contains
the others because they are in the same chain, call thislpneThen T} is
inconsistent which is a contradiction.

So we can apply Zorn’s lemma.
O

Observation 4.30(Zorn’s lemma and the axiom of choice)n the proof of Zorn’s
lemma (i.e. more precisely the proof that chain-completsefhave maximal ele-
ments) we made an infinite number of arbitrary choices: fahea € X we picked
Z > x”. Note that in the IA Numbers and Sets course the axiom ofceheias used to
simultaneously pick orderings for a countable number of.set

The axiom of choice says: Given a dednd a family{A4; : ¢ € I} of non-empty
sets, there is a functiofi : I — U, A; such thatf (i) € A; Vi.

This is different from the other rules that are used to budtsshecause it claims
the existence of an object which is not necessarily specifiegliely.

Therefore it is sometimes interesting to see if a proof dépemn the axiom of
choice.

Note that the axiom of choice follows from the other axiomdifite sets but not
for infinite ones. Furthermore it is not possible to deduc@#xof Choice for infinite
sets from the other axioms(?).

From Zorn’s lemma we can deduce the axiom of choice. Giveméyfd A;};cr,
define a partial choice function (PCH) : J +— U, 4; with f(i) € A; Vi € J for
someJ C I. Order partial choice functions witlf < ¢ iff J; C J, and f = g on
J¢. Then the set of all PCFs is a poset on which we can apply Z¢enisna to find a
maximal PCF.

Zorn's lemma was hard to prove because Bourbaki-Witt wad,hast because the
Axiom of Choice was used.

Furthermore Zorn’s lemma is easy to prove from the Axiom afiGhusing well-
ordering and ordinals (chapter 6).
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Chapter 5

Predicate logic

Observation 5.1. “The completeness theorem is an absolute highlight of athath-
ematics. It's brilliant” - Dr Leader

Definition 5.2 (Arity). The number of arguments to a function is its arity.

Definition 5.3 (Group) A group is a setd with functionsm : A2 +— A,i: A+ A, e:
A% A,

[Associativity)(Vx, y, z)(m(z, m(y, z)) = m(m(x,y), 2) (5.1)
[Identity](Vz)(m(z,e) =z Am(e,x) = x) (5.2)
[ITnverse|(Vx)(m(z,i(z)) = e Ae=m(i(x),x)) (5.3)

Definition 5.4 (Poset) A poset is a set A with a relationC A2. Conveniently< (z,y)
is writtenz < y.

[Re flexivity](Va)(z < x) (5.4)
[Anti — symmetry|(Vz,y)((r <y Ay <z) = (x =vy)) (5.5
[Transitivity|(Vz,y, 2)((r <y Ay < z) = (z < 2)) (5.6)

Definition 5.5 (Languagel, functions(?, predicatdl, arity function«). Let the set of
functions(2 and predicatesI be distinct sets, and let the arity functionde QUII —
N. Then the languagé = L(2, 11, «) is the set of all formulae.

Example 5.6. For groups,Q2 = {m, 4, e}, 11 = (). For posets{) = (), 1T = {<}.
Definition 5.7 (Term). A term is a subset of strings of symbols from the alph&heil.
1. Every variable is a ternwg, 1, - - ).
2. If f € Q,a(f) =nandtq,--- ,t, are terms therf (¢4, - - - ,¢,) is aterm.

Observation 5.8. Note that the terny (¢4, - - - ,¢,,) is not the value of the functiofi
with these arguments. Itis just a string. To emphasize tuscan write itfty, - - .

15
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Definition 5.9 (Atomic formula) An atomic formula is one of
1. 1.
2. (s =t)if s,t are terms.

3. ¢(t1, -+ ,tn) if ¢ € Tanda(¢) = nandty, - -- ,t, are terms.

Definition 5.10(Formula) 1. Atomic formulae are formulae.
2. If pandq are formulae then so i& = q).
3. If p aformula andx a variable then(vzx)p is a formula.

-p (p=1) “not p”
- Vg ((p)=4q) “porq’
Definition 5.11 (Shorthands) . .,
( ) prg == (-0) ‘pandq
(Fz)p  =(Vz)(—p) “exists x such that p”

Definition 5.12 (Free and bound variableshn occurrence of a variable in a formula

is free if it is not within the brackets of a#%”". Otherwise it is bound.

Definition 5.13(Sentence) A sentence is a formula with no free variable (for example
the axioms for groups and posets).

Definition 5.14 (L-structure) Let L = L(Q, II, o) be a language. AilL-structure is a
non-empty se#l, for eachf € Q a functionf, : A*(Y) — A and for eachy € 1T a
subsetpy C A%(@),

Example 5.15. L the language of groups: af-structure is a setd with functions
my: A% Ajig: A Aey € A

L the language of posets: alrstructure is a non-empty set with a relatigty C
A?,
Definition 5.16 (Closed term) A closed term is a term with no variables. For example
m(e,i(e)), notm(x,i(x)).

Definition 5.17 (Interpretation of a closed term)he interpretation of a closed term
in an L-structure A writtent, € A is defined inductively. If € Q, a(f) = n and
ty,--- ,t, Cclosed terms theffi(ty, - ,tn)a = fa(ti,, - stny)-

Note that ifc is constant symbol thery is already defined.

Definition 5.18(Interpretation of a sentencdjor a sentence € L and anL-structure
A the interpretation op in Aisapa € {0, 1} defined inductively

1. La=0

1 ifsqg=ta

2. Forclosed terms,t (s =t)4 = .
0 otherwise

3. For¢ €11, a(¢) = n and closed terms;, - - - , t,, set

Bltr, - ty) = {1 if(t1,, ,tn,) € Pa

0 otherwise
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0 ifpa=1,g4=0

4. For sentences, g set(p = q)a = .
1 otherwise

5. ((V2)p)a = {1 if for all o € A havepla/a]a = 1

0 otherwise

where we extend to L’ by adding a new constant symhbland makeA an
L’-structure by setting 4 = a and for any ternt, p[t/z] is the formula obtained
by replacing each free occurrence ofvith ¢.

Observation 5.19. “Now forget all this nonsense and think of it only as in thegimil
idea.” - Dr Leader.

Definition 5.20 (Truth, models, holds)If p4 = 1 we sayp holds inA or p is true in
Aor Ais amodel op written A |= p.

Definition 5.21 (Theory, tautology) For a setT of sentences (a theory) sayis a
model of " writenA = Tif AEpVp e T.

For T a theory,p a sentence, sa¥ entailsp written T' |= p if every model of" is
a model ofp.

If 0 = p we sayp is a tautology.

Observation 5.22. What is called in propositional logic a valuation is like ingalicate
logic an interpretation.

Definition 5.23 (Axiomatize, axioms) Say that the members of a the@hare axioms,
and that the theory axiomatizes the things which are modats o

Example 5.24(Theory of groups) Let L be the language of groups and let

T = {(Vz,y, z)(m(z,m(y, z)) = m(m(z,y), 2),
(Vx)(m(z,e) =z Am(e,z) = x),
(Va)(m(z,i(z)) = e Ne=m(i(z),x))}

Then anL-structure A is a model off" iff A is a group.T axiomatizes the class of
groups.

Suppose we change the third axiom to be {w'st) (m(x,i(z)) = €) to produceT”.
DoesT” axiomatize the class of groups? (Think about it but the ansswees).

Example 5.25(Theory of posets)Let L = language of posets and [&t= {(Vz,y)((z <

yANy<z)= (x=y)),(Va)(z <), (Vo,y,2) (2 <y) Ay < 2)) = (x < 2))}
Then a model fof" is precisely a poset.

Example 5.26(Theory of fields) LetQ = {+, x,—,0,1}. II = (. For T take
1. Abelian group unde#, —, 0
. Associative
. Commutative

2

3

4. Distributive over+
5. -(0=1)

6

- (V2)((=(r = 0)) = (Fy)(z xy =y x z=1))
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ThenT axiomatizes the class of fields.

Example 5.27(Theory of graphs)Language of) = f andIl = {~}. T' = {(Vx)(—(z ~

z)), (Vz,y)((z ~ y) = (y ~ 2))}.
Then anL-structure onG is aT-model iffG is a graph.

Observation 5.28. This is called first-order logic. We can qualify over elenseinait
not over subsets. For example we cannot say “for all subgsafp!”.

Observation 5.29. Could have an alternative language for groups with= {m, e}
and third element of the theory beifigz)(Jy)(m(z,y) = e A m(y,z) = e).

Observation 5.30. Many natural theories hav€ infinite. For example, we have fields
of characteristic zero.L language of fieldsT = axioms of a field, with-(1 + 1 =
0),~(1+1+1=0)etc.

Observation 5.31. Fields of non-zero characteristicl language of fields]" axioms
for a field. Can we axiomatize fields of charactisi®? (Exercise.)

5.1 Proofs
Definition 5.32 (Logical axioms) Three old ones, two for and two forv.

1. p = (¢ = p) for any formulaep, q.

2. (p=(g=r))=((p=q) = (p= q)) for any formulaep, q, r.
3. (=—p) = p for any formulap.

4. (Vz)(x = z) for any variablex.
5.

(Vz,y)(z = y) = (p = ply/x])) wherezx, y variables,p a formula in whichy
does not occur bound.

6. ((Vz)p) = p[t/x] wherex is a variable,p a formula, ¢ a term with no free
variable occurring that is bound ip.

7. (Vz)(p = q)) = (p = (Vz)q) wherez is a variable,p, ¢ formulae withz not
occurring free inp.

Definition 5.33 (Rules of deduction, modus ponens and generalizatibgdus po-
nens. Fronp, p = ¢ deducey.

Generalization. Fronmp deduce(Vx)p as long asz does not occur in any of the
premises used to proye

Definition 5.34 (Proof). For S C L andp € L a proof ofp from S consists of a finite
sequence of lines each of which is a logical axiom or a membéf ar is obtained
from earlier lines by a deduction rule.

Write S I p if there is a proof ofp from S.

Observation 5.35. If we allowed) to be anL-structure we would have a contradiction.

Theorem 5.36(Deduction theorem)Let.S C L andp,q € L. ThenS | (p = q) iff
SuU{p}Fq.
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Proof. If S+ (p = ¢) then have by modus ponefsJ {p} |- q.
If SU {p} F ¢ then as in the first chapter we show that for each lineima proof
of g from S U {p} infactS + (p = r).
We do this inductively. The only new case is if we have usedegaization. So in
proof of g from S U {p} we have
r

(Vz)r

and we know thab + (p = r).

Note that the proof of from S U {p} did not use a free in any hypothesis, so also
our proof ofp = r from S did not use one. Therefore we can deddde ((Vz)(p =
r)) by generalization.

If z is not free inp: deduceS F (p = ((Vz)r)) by the seventh axiom. Otherwise
is free inp. So in our proof of Va)r from SU{p} cannot have useg(as generalization
was used). S& F ((Vz)r) soS F (p = ((Vx)r)) by the first axiom and modus
ponens.

O

Theorem 5.37(Soundness theoremy is a set of sentences, apdc sentence. Then
S+ pimpliesS = p.

Proof. Given a model of5, p holds in this model by induction on the lines in the proof.
O

Theorem 5.38(Model Existence Lemma or Completeness Theorelne} S be a con-
sistent set of sentences. Thg¢has a model.

Definition 5.39 (Witness) A witness for(3z)p is p[t/x] for a closed ternt.

Proof. HaveS in languagel = L(Q2,II). ExtendS to maximal consistent; C L by
Zorn's lemma.

ThenS; is complete (that is for any € L eitherS; U{p} is consistent o6; U{—p}
consistent. For eact{3x)p) € S add a new constantto the language to formh; =
L(QU C4,1I) and add the sentengg/«] to Sy to form 7.

ThenT; is consistentT’ has witnesses fa$; .

Now extendT’, to a completes,, 1, and continue inductively.

LetS = U, S, inlanguagel = L(QUC, UCy U - -+, TI).

Claim. S consistent. Proof of claim. SuppoSe- L. Then some finites’ C S has
S’ 1 whence somé,, - L. Contradiction.

Claim. S complete. Proof of claim. For any sentence L havep € L,, for some
n asp mentions only finitely many symbols. B&,; complete in languagé,, so
Spi1FporS, 1 - (=p). ButS 2 S. Done.

Claim. S has witnesses. Proof of claim. Basically the same as forisangy.

For closed terms, ¢t € L says ~ tif S - (s = t), clearly an equivalence relation.
Write [¢] for equivalence class of

Let A = {[t] : t a closed term of }.

For eachf € Q(L) with arityn andty, - - - , ¢, closed terms, seta ([t1],- - - , [tn]) =
[f(t1,--- ,tn)]. (Clearly well defined.)

For eachp € II(L) with arityn andty, - - - , ¢, closed terms, seta ([t1],- - - , [ta]) =
{({ta], -+, [tn]) € A" : S ¢(t1,--- ,tn)}. (Clearly well defined.)

To show that4 is a model forS we will show that for any sentengec I we have
pa = 1iff S+ p. Thisis an easy induction.
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s=t. Sk (s=1t)iff s ~tiff sa =taiff [s] =[t]iff (s=1t)a=1.
. Pty -+, ty) Similarly.
. L. SK 1landly =0.

A woN R

.(p=4q. Sk (p=q)iff S+ pandS I/ q (asS is complete). By induction
hypothesigs =0orgs = 1iff (p = ¢)a = 1.

5. (3x)p. S+ (3x)piff S - p[t/z] or some closed term sop[t/x]4 = 1 by
induction hypothesis, equivalentlydz)p holds in A (since A is the set of all
closed terms quotiented).

O

Corollary 5.40 (Adequacy theorem)Let S be a theory ang a sentence. Thefi = p
impliesS + p.

Proof. If S = pthenS U {-p} = L impliesS U {-p} - L. So by the deduction
theoremS + (——p) soS F p.
O

Theorem 5.41(Godel's Completeness Theorem, the completeness theoremstadrfi
der logic) S atheory,p a sentence. Thefi - piff S |= p.

Proof. By adequacy and soundness.
O

Corollary 5.42 (Compactness theoremp a theory. If every finite subset 6fhas a
model then so does.

Proof. Trivial if we replace “has a model” with “is consistent”.
O

Corollary 5.43 (Upward Lowenheim-Skolem theorem)l et S be a theory with an
infinite model. Thery has an uncountable model.

Proof. Add to the language uncountably many new constants{egyc;. LetS’ =
SU{=(c; =¢;):i,5€l,i#j}.

We want a model fo5’. But every finiteF' C S’ certainly has a model sincg
only mentions finitely many of the;. So by compactness the infinite model
exists, and it is also a model fér.

O

Observation 5.44. The same trick of adding constantg - - - shows that no set of
sentences (in the language of groups, for example) can atipen(i.e. have as a
model) the class of finite groups.

In other words, “finiteness is not a first order property”. Egalently any theory
that has arbitrarily large finite models must have an infimtedel (called “overspill”).

Corollary 5.45 (Downward Lowenheim-Skolem theorem).et S be a consistent the-
ory in a countable language (that §3, IT countable). Thei$ has a countable model.

Proof. The model constructed in the proof of the model existencerlanvas maximal
and countable.
O
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5.2 Peano Arithmetic

Definition 5.46 (Language of Peano arithmetic2? = {0,s,+, x} wheres is the
successor function.

Definition 5.47 (Axioms of Peano Arithmetic) 1. (Vz)(—(s(z) = 0))
2. (v, y)((s(x) = s(y)) = (= y))

- (V1) -+ (V) ((p[0/2] A (V2)(p = pls(x)/z])) = (Vx)p), that is, induction
with parametergvy, ) - - - (Vy,,) for free variables irp.

w

Vz)(x 4+ 0 =)

4. (
5. (Vo,y)(z + s(y) = s(z +y))
6. (Vz)(x x 0=0)

7. (Vo y)(z x s(y) = (z x y) + )

The first three axioms are sometimes called weak Peano Agitbm

Observation 5.48. We might have first guessed that the induction axiom showd ha
been(p[0/x] A (Vx)(p = p[s(z)/x])) = (Va)p. But this is not how we do induction
in real life.

Definition 5.49 (Axiom scheme) The induction axiom is in fact a different axiom for
eachp. An axiom like this specifying an infinite set of axioms isetinmes called an
axiom scheme.

Observation 5.50. PA has an infinite modeN) so by the Upward-twenheim-Skolem
theorem PA has an uncountable model which is thereforé&N\nd@ut we would likeN
to be characterized uniquely by these axioms. The probléhaighe induction axiom
is not powerful enough - it only refers to countably many stbefN (those defined
by ap) whereas normal induction refers to all subsets.

Therefore induction is not a first order property.



