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Chapter 1

Introduction

The notes were typed up by me, John Fremlinjohn@fremlin.de.
These notes are based on the first three chapters of the part IImathematics course

“Logic, Computation and Set Theory” given by Dr Leader in Cambridge in Michælmas
2003. These notes are not connected to Dr Leader in any way. Ifthere are any mistakes
in them, it is more than very likely that they are my fault, notDr Leader’s.

Furthermore these notes are very definitely no substitute for actually going to Dr
Leader’s lectures (which are very good), because they do notinclude all of the material
and especially examples covered, or any of the asides. Additionally, the material on
computation and set theory is not included in these notes.

Finally, I would like to thank Dr Leader for taking such care to polish his crystal-
clear lectures, and for being a very patient supervisor.
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Chapter 2

Propositional logic

Definition 2.1 (Primitive propositions). P = {p1, p2, p3, · · · } is the set of primitive
propositions.

Definition 2.2 (Proposition). A proposition is a subset of strings of symbols from the
alphabet(, ),⇒,⊥, p1, p2, · · · .

Definition 2.3 (Language). The languageL (or L(P )) is the set of propositions

1. P ⊂ L

2. ⊥ ∈ L

3. if p, q ∈ L, (p ⇒ q) ∈ L

Ln is the set of propositions of length≤ n.

Definition 2.4 (Shorthands).
¬p (p ⇒ ⊥) “not p”

p ∨ q ((¬p) ⇒ q) “p or q”
p ∧ q ¬(p ⇒ (¬q)) “p and q”

Definition 2.5 (Valuation). A valuation is a function.v : L 7→ {0, 1}.

1. v(⊥) = 0

2. v(p ⇒ q) =

{

0 if v(p) = 1, v(q) = 0

1 otherwise

Theorem 2.6(Valuations agreeing on the basic propositions are the same). If valua-
tionsv, v′ havev(p) = v′(p) for all p ∈ P thenv ∼= v′.

Proof. v = v′ on L1. If v(p) = v′(p) andv(q) = v′(q) thenv(p ⇒ q) = v′(p ⇒ q)
so by induction∀Ln.

Theorem 2.7(A function defined on the primitive propositions can be extended to a
valuation). Givenw : P 7→ {0, 1} there exists a valuationv such thatv(p) = w(p) for
all p ∈ P .

Proof. Let v(p) = w(p) for all p ∈ P and letv(⊥) = 0. Extend.
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4 CHAPTER 2. PROPOSITIONAL LOGIC

Definition 2.8 (Model). If v(p) = 1, p is true inv. v is a model ofp.

Definition 2.9 (Tautology). If v(p) = 1 for all valuationsv thenp is a tautology.|= p.

Observation 2.10(Techniques for proving something is a tautology). Draw a truth
table, also note that ifv(p ⇒ q) = 0 thenp = 1 andq = 0.

Definition 2.11 (Semantic implication, entails). If S ⊆ L, t ∈ L andv(s) = 1 for all
s ∈ S meansv(t) = 1 thenS entails or semantically impliest (S |= t). That is, every
model ofS is a model oft.



Chapter 3

Syntactic implication

Definition 3.1 (Axioms). 1. p ⇒ (q ⇒ p) is true∀p, q ∈ L

2. (p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ⇒ (p ⇒ r)) ∀p, q, r ∈ L

3. (¬¬p) ⇒ p ∀p ∈ L

Observation 3.2(Consistent with semantic implication). All the axioms are tautolo-
gies.

Definition 3.3 (Modus ponens). Fromp andp ⇒ q can deduceq.

Definition 3.4 (Proof). LetS ⊆ L be called the set of hypotheses or premises. A proof
of a conclusiont ∈ L fromS is a finite sett1, · · · , tn with tn = t and eachti is either

1. an axiom

2. a member ofS

3. such that there existj, k < m : tk = (tj ⇒ tm)

ThenS ⊢ t (S proves or syntactically impliest). If ∅ ⊢ t then t is a theorem
(written⊢ t).

Theorem 3.5. (p ⇒ q, q ⇒ r) ⊢ (p ⇒ r)

Proof.

1 (p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ⇒ (p ⇒ r)) Axiom 2
2 q ⇒ r Hypothesis
3 (q ⇒ r) ⇒ (p ⇒ (q ⇒ r)) Axiom 1
4 p ⇒ (q ⇒ r) Modus ponens on 2, 3
5 (p ⇒ q) ⇒ (p ⇒ r) Modus ponens on 4,1
6 p ⇒ q Hypothesis
7 p ⇒ r Modus ponens on 6,5

Theorem 3.6.
⊢ (p ⇒ p)
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6 CHAPTER 3. SYNTACTIC IMPLICATION

Proof.

1 p ⇒ ((p ⇒ p) ⇒ p) ⇒ ((p ⇒ (p ⇒ p)) ⇒ (p ⇒ p)) Axiom 2
2 p ⇒ ((p ⇒ p) ⇒ p) Axoim 1
3 (p ⇒ (p ⇒ p)) ⇒ (p ⇒ p) Modus ponens on 2,1
4 p ⇒ (p ⇒ p) Axiom 1
5 p ⇒ p Modus ponens on 4,3

Theorem 3.7 (Deduction theorem). Let S ⊆ L, p, q ∈ L. ThenS ⊢ (p ⇒ q) iff
S ∪ [p] ⊢ q.

Proof. S ⊢ (p ⇒ q). Given a proof ofp ⇒ q from S add lines
p Hypothesis
q Modus ponens

Thus provingq from S ∪ [p].
S ∪ [p] ⊢ q
Let t1, t2, ..., tn be a proof ofq from S ∪ [p]. Show thatS ⊢ (p ⇒ ti) for everyi.
If ti = p certainlyS ⊢ (p ⇒ p) as⊢ (p ⇒ p).

Otherwise ifti is an axiom orti ∈ S, write
ti Axiom or Hypothesis

ti ⇒ (p ⇒ ti) Axiom 1
p ⇒ ti Modus ponens

SoS ⊢ (p ⇒ ti).
Otherwiseti was got from Modus Ponens, i.e. there existj such thattj ⇒ ti. By

induction oni assumeS ⊢ (p ⇒ tj) andS ⊢ (p ⇒ (tj ⇒ ti)) so write
(p ⇒ (tj ⇒ ti)) ⇒ ((p ⇒ tj) ⇒ (p ⇒ ti)) Axiom 2

(p ⇒ tj) ⇒ (p ⇒ ti) Modus ponens
p ⇒ ti Modus ponens

Example 3.8. To show{p ⇒ q, q ⇒ r} ⊢ (p ⇒ q) show{p ⇒ q, q ⇒ r, p} ⊢ r using
modus ponens twice.

Theorem 3.9(Soundness theorem). LetS ⊆ L, t ∈ L thenS ⊢ t impliesS |= t.

Proof. Given a valuationv that is a model forS, i.e. v(s) = 1∀s ∈ S we want
v(t) = 1.

Certainly axioms (are tautologies) and elements ofS are true. Also modus ponens:
if v(p) = 1 andv(p ⇒ q) = 1 thenv(q) = 1. Sov(p) = 1 for all p in a proof oft
from S.

Definition 3.10. S ⊆ L is inconsistent ifS ⊢ ⊥. Otherwise it is consistent.

Definition 3.11 (Deductively closed). A setS ⊆ L is deductively closed if it contains
all its consequences. IfS ⊢ p thenp ∈ S.

Theorem 3.12(S consistent implies it has a model). LetS ⊆ L be consistent. ThenS
has a model.

Proof. Key idea: the theorem fails if bothp and¬p are inS. So try to extendS keeping
it consistent to swallow up one ofp or¬p for eachp ∈ L.

Claim. For any consistentS ⊆ L and anyp ∈ L at least one ofS ∪ {p} and
S ∪ {¬p} is consistent.
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Proof of claim. SupposeS ∪ {p} is inconsistent. Thenp ⊢ ⊥. SoS ⊢ (p ⇒ ⊥) so
S andS ∪ {¬p} prove the same things soS ∪ {¬p} is consistent.

L is countable. Lett1, t2, t3, · · · be an ordering ofL. Let S0 = S. Let Sn+1 be
Sn ∪ {tn} or Sn ∪ {¬tn} choosing one which is consistent. LetS̄ = ∪n≥1Sn. Then
for eachp ∈ L at least one ofp ∈ S̄ or ¬p ∈ S̄. S̄ is consistent because proofs are
finite. Also S̄ deductively closed. Ifp /∈ S thenS does not provep (as¬p ∈ S).

Definev : L 7→ {0, 1} : v(p) =

{

1 if p ∈ S

0 otherwise
. v is a valuation. Proof.v(⊥) = 0.

If v(p) = 1, v(q) = 0 thenp ∈ S̄, q /∈ S̄. So (p ⇒ q) /∈ S̄ so v(p ⇒ q) = 0. If
v(q) = 1 thenq ⊢ (p ⇒ q) so(p ⇒ q) ∈ S̄ sov(p ⇒ q) = 1. If v(p) = 0 thenp /∈ S̄
so¬p ∈ S̄. Enough to show¬p ⇒ (p ⇒ q). That is,(p,¬p) ⊢ q.

p ⇒ ⊥ Hypothesis
⊥ ⇒ ¬¬q Axiom 1

(¬¬q) ⇒ q Axiom 3
Sov(p ⇒ q) = 1. Sov is a valuation. So there is a model forS.

Observation 3.13.Previous theorem used fact thatP is countable (so thatL is count-
able) but this is not necessary by Zorn’s lemma (next chapter).

Corollary 3.14 (Adequacy theorem). LetS ⊆ L, t ∈ L. ThenS |= t impliesS ⊢ t.

Proof. If S |= t thenS ∪ (¬t) |= ⊥ (has no model) soS ∪ (¬t) ⊢ ⊥ (is inconsistent).
S ⊢ ((¬t) ⇒ ⊥) by deduction theorem.S ⊢ (¬¬t). SoS ⊢ t by axiom.

Theorem 3.15(Completeness theorem for propositional logic). Let S ⊆ L, t ∈ L.
ThenS |= t iff S ⊢ t.

Proof. Adequacy and soundness theorems.

3.0.1 Two consequences of completeness

Theorem 3.16(Compactness theorem). Let S ⊆ L, t ∈ L : S |= t. Then some finite
S′ ⊆ S hasS′ |= t.

Proof. If S |= t thenS ⊢ t. But proofs are finite so some finiteS′ ⊆ S hasS′ ⊢ t.
ThenS′ |= t.

Corollary 3.17 (Equivalent formulation of compactness). If every finite subset ofS
has a model, thenS is consistent.

Proof. There is no finite subset ofS, such thatS ⊢ ⊥. SoS 6⊢ ⊥.

Theorem 3.18(Decidability theorem). There is an algorithm to determine, for any
S ⊆ L andt ∈ L whether or notS ⊢ t.

Note that this is not obvious at all.

Proof. Trivial by replacing⊢ with |=. To decide ifS |= t just write down a truth table.
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Chapter 4

Posets and Zorn’s lemma

Definition 4.1 (Poset). A partially ordered set or poset is a pair(X,≤) whereX is a
set and≤ is a relation onX satisfying:

1. Reflexivity:x ≤ x, ∀x ∈ X.

2. Antisymmetry: ifx ≤ y andy ≤ x thenx = y, ∀x, y ∈ X.

3. Transitivity: ifx ≤ y andy ≤ z thenx ≤ z, ∀x, y, z ∈ X.

Writex < y for x ≤ y andx 6= y. Alternatively in terms of<, 6 ∃x : x < x, x < y
andy < z impliesx < z.

Example 4.2. (N,≤), (Q,≤) and(R,≤) are posets (in fact total orders).

Example 4.3. (N+, |) where (x|y meansx dividesy) is not a poset.

Example 4.4. S a set.X ⊆ P(S) with A ≤ B if A ⊆ B.

Definition 4.5 (Hasse diagram). A Hasse diagram for a poset is a drawing of the
points in the poset with an upwards line fromx to y if y coversx (meaningx < y and
6 ∃z : x < z < y).

Sometimes a Hasse diagram can be drawn for an infinite poset. For example(N,≤)
but (Q,≤) has an empty Hasse diagram.

Definition 4.6 (Chain). A chain in a posetX is a setA ⊆ X that is totally ordered
(∀x, y ∈ A : havex ≤ y or y ≤ x).

For example in(R,≤) any subset, like(Q,≤) is a chain. Note that a chain need
not be countable.

Definition 4.7 (Antichain). An antichain is a subsetA ⊆ X in which no two distinct
elements are comparable.∀x, y : x 6= y, neitherx ≤ y nor y ≤ x.

Definition 4.8 (Upper bound). For S ⊆ X andx ∈ X, sayx is an upper bound forS
if y ≤ x ∀y ∈ S.

Definition 4.9 (Least upper bound, supremum,∧S). x is a least upper bound for
S ⊆ X if x is an upper bound forS and every upper boundy for S satisfiesx ≤ y.

Clearly unique if it exists. Writex = ∧S = supS the supremum or join ofS.

Definition 4.10 (Complete). A poset is complete if every set has a supremum.

9



10 CHAPTER 4. POSETS AND ZORN’S LEMMA

Observation 4.11. Every complete posetX has a greatest element,∧X and a least
element∧∅.

Definition 4.12 (Monotone, order preserving). A functionf : X 7→ X, X a poset, is
monotone or order preserving ifx ≤ y impliesf(x) ≤ f(y).

Theorem 4.13(Knaster-Tarski fixed point theorem). X a complete poset,f : X 7→ X
order preserving. Thenf has a fixed point.

Proof. Let E = {x ∈ X : x ≤ f(x)}. PossiblyE = ∅.
Claim. If x ∈ E thenf(x) ∈ E. Proof. x ≤ f(x) sof(x) ≤ f(f(x)) asf order

preserving. Sof(x) ∈ E.
Let s = ∧E.
Claim. s ∈ E. True if f(s) an upper bound forE (sos ≤ f(s)). If x ∈ E, x ≤ s

sof(x) ≤ f(s). But x ∈ E sox ≤ f(x) ≤ f(s). Sof(s) is an upper bound forE.
Sof(s) in E by first claim. Sof(s) ≤ s but second claim showeds ≤ f(s) so

f(s) = s.

Corollary 4.14 (Schr̈oder-Bernstein theorem). A,B have injectionsf : A 7→ B and
g : B 7→ A thenA,B biject.

Proof. Want partitionsA = P ∪ Q andB = R ∪ S such thatfp bijectsP with R and
gs bijectsS with Q.

Then define obvious bijectionh : A 7→ B by takingh = f on P andh = g−1 on
Q.

SetP ⊆ A : A \ g(B \ f(P )) = P , R = f(P ), S = B \ R, Q = g(S). Consider
(X = P(A),⊆). X complete. Defineθ : X 7→ X. θ(P ) = A \ g(B \ f(P )). Thenθ
is order preserving so it has a fixed point by Knaster-Tarski.

Definition 4.15 (Chain-complete). A (non-empty) posetX is chain-complete if every
non-empty chain has a supremum.

Observation 4.16. Not all functions on chain-complete posets have fixed points. Any
function on an anti-chain is order preserving.

Observation 4.17. The non-empty condition is a little pedantic but necessary.

Definition 4.18 (Inflationary). f : X 7→ X is inflationary ifx ≤ f(x) ∀x ∈ X.
Not necessarily related to order preserving.

Theorem 4.19(Bourbaki-Witt theorem). X is a chain-complete poset,f : X 7→ X
inflationary. Thenf has a fixed point.

Proof. This proof is like battling Godzilla on a tightrope, it has tobe carefully chore-
ographed. Although the theorem seems fairly plausible, it has many big consequences.

Fix x0 ∈ X. SayA ⊆ X closed if

1. x0 ∈ A

2. x ∈ A impliesf(x) ∈ A

3. C a non-empty chain inA implies∧C ∈ A.
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Note that any intersection of closed sets is closed.
Let E = ∩

AclosedA is closed. Therefore ifA ⊆ E thenA = E.
AssumeE is a chain. Lets = ∧E. Thens ∈ E as E is closed. Therefore

f(s) ∈ E. Sof(s) ≤ s. Sof(s) = s asf inflationary. So done.
Claim. E is a chain.
Sayx ∈ E is normal if∀y ∈ E : y < x thenf(y) ≤ x.
There are two properties of normality we want prove. Allx ∈ E are normal.

Secondly, it should satisfy the condition we might naturally describe as “normal”: ifx
normal then∀y ∈ E eithery ≤ x or y ≥ f(x).

Once we have done this, we are finished.∀x, y ∈ E, y ≤ x or y ≥ f(x) ≥ x. So
E is a chain.

Claim. If x normal then∀y ∈ E eithery ≤ x or y ≥ f(x).
Proof of claim. LetA = {y ∈ E : y ≤ x or y ≥ f(x)}. Will show A is closed.

Any closed subset ofE is E soA closed impliesA = E.

1. x0 ∈ A. x0 ≤ x (∀x ∈ E).

2. Giveny ∈ A we needf(y) ∈ A. So havey ≤ x or y ≥ f(x) and wantf(y) ≤ x
or f(y) ≥ f(x).

If y < x thenf(y) ≤ x asx is normal.
If y = x thenf(y) ≥ f(x).
If y ≥ f(x) thenf(y) ≥ y ≥ f(x).

Sof(y) ∈ A.

3. Given a (non-empty) chainC ⊆ A, wants = ∧A ∈ A.

If all y ∈ C havey ≤ x then certainlys ≤ x becauses a supremum. Otherwise
somey ∈ C hasy ≥ x and noty ≤ x soy ≥ f(x) asy ∈ A. Sos ≥ y ≥ f(x).
Sos ∈ A.

SoA closed, soA closed subset of smallest possible closed setE soA = E.
Claim. Everyx ∈ E is normal.
Proof of claim. LetN = {x ∈ E : x is normal}. We will show thatN is closed so

N = E.
N is closed:

1. Noy ∈ E hasy < x0. Sox0 is normal,x0 ∈ N .

2. Givenx normal wantf(x) normal. So must showy < f(x) implies f(y) ≤
f(x). By first claim y < f(x) implies y ≤ x. So y = x or y < x. So
f(y) = f(x) or f(y) ≤ x ≤ f(x) (becausex is normal).

3. Given a (non-empty) chainC ⊆ N needs = ∧C ∈ N . That is, we need that if
y < s thenf(y) ≤ s ∀y ∈ E.

Fory < s cannot havey ≥ x ∀x ∈ C (definition of supremum). So somex ∈ C
has noty ≥ x, soy < x by the first claim. Sof(y) ≤ x (x normal) so certainly
f(y) ≤ s.

SoN closed soN = E. SoE is a chain.



12 CHAPTER 4. POSETS AND ZORN’S LEMMA

Observation 4.20. “Now forget the proof” - Dr Leader

Definition 4.21 (Maximal element of a poset). Given a posetX an elementx is maxi-
mal if noy ∈ X hasy > x.

Corollary 4.22 (Every chain-complete poset has a maximal element). Every chain-
complete poset has a maximal element.

Observation 4.23.Very non-obvious theorem which trivially implies Bourbaki-Witt (x
maximal impliesf(x) = x).

Proof. By contradiction. For eachx ∈ X havex̄ ∈ X with x̄ > x. Then the function
x 7→ x̄ is inflationary. So it has a fixed point. Contradiction.

Lemma 4.24(One important chain-complete poset). LetX be any poset and letP be
the collection of all chains ofX ordered by inclusion. ThenP is chain complete.

Proof. Let {Ci : i ∈ I} be a chain inP . Ci is a chain inX for all i ∈ I. Note thatI
need not be countable. Further∀i, j ∈ I Ci ⊆ Cj or Cj ⊆ Ci.

Now letC = ∪i∈ICi. C is clearly a least upper bound for{Ci}. We need to show
that it is a chain.

Let x, y ∈ C. So∃i, j : x ∈ Ci andy ∈ Cj . SoCi ⊆ Cj or Cj ⊆ Ci. Sox, y
related. SoC a chain.

Corollary 4.25 (Kuratowski’s lemma). Every posetX has a maximal chain.

Proof. The set of chains ofX is a chain-complete poset.

Corollary 4.26 (Zorn’s lemma). Let X be a (non-empty) poset in which every chain
has an upper bound. ThenX has a maximal element.

Proof. Let C be a maximal chain inX. Let x be an upper bound forC. Thenx is
maximal. Ify > x thenC ∪ {y} is a chain properly containingC. Contradiction.

Observation 4.27.Non-emptiness actually not needed as it follows from the condition
that every chain has an upper bound.

Corollary 4.28 (Every vector spaceV has a basis). Every vector spaceV has a basis.

Proof. Let X = {A ⊆ V : A is linearly independent} ordered by inclusion. We
seek the existence of maximal elementA ∈ X using Zorn’s lemma. Then we are done
because ifA does not spanV it is not maximal.

1. ∅ is linearly independent. So∅ ∈ X. SoX 6= ∅.

2. Given a chain{Ai : i ∈ I} in X we seek an upper boundS. Let S = ∪i∈IAi.
ThenS ⊇ Ai ∀i so we just needS ∈ X (that is,S linearly independent).

Supposeλ1x1+λ2x2+· · ·+λnxn = 0 for somex1, · · · , xn ∈ A andλ1, · · · , λn

not all zero. HaveAm ∈ X such thatAm contains all thexi becauseX is a
chain. But this contradictsAm being linearly independent. SoS ∈ X. So every
chain has an upper bound.
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Corollary 4.29 (Completeness theorem for L(P) when the set P of primitive proposi-
tions may be uncountable). LetS ⊆ L(P ) for anyP . ThenS consistent impliesS has
a model.

Proof. Want S̄ ⊃ S, that is consistent, witht ∈ S̄ or 6 t ∈ S̄ for all t ∈ L. Then done
by settingv(t) = χS̄(t).

Try to get a maximal consistent̄S ⊃ S. Then for anyt ∈ L haveS̄∪{t} or S̄∪{6 t}
consistent. SōS satisfiest ∈ S̄ or 6 t ∈ S̄ for all t ∈ L.

Thus letX = {T ⊆ L : T ⊇ S, T consistent}.
We want to use Zorn’s lemma to show thatT has a maximal element.

1. X 6= ∅ sinceS ∈ X.

2. Given a non-empty chain{Ti : i ∈ I} in X. Seek an upper boundT . Let
T = ∪i∈ITi. ThenT ⊃ Ti ∀i. Just needT ∈ X.

S ⊆ T asS ⊆ Ti ∀i (andI 6= ∅).

Claim. T consistent.

Proof of claim. SupposeT ⊢ ⊥. Then havet1, · · · , tn ∈ T with {t1, · · · , tn}
inconsistent. Havetj ∈ Tij

for someij ∈ I. But one of theTij
contains

the others because they are in the same chain, call this oneTk. ThenTk is
inconsistent which is a contradiction.

So we can apply Zorn’s lemma.

Observation 4.30(Zorn’s lemma and the axiom of choice). In the proof of Zorn’s
lemma (i.e. more precisely the proof that chain-complete posets have maximal ele-
ments) we made an infinite number of arbitrary choices: for each x ∈ X we picked
x̄ > x”. Note that in the IA Numbers and Sets course the axiom of choice was used to
simultaneously pick orderings for a countable number of sets.

The axiom of choice says: Given a setI and a family{Ai : i ∈ I} of non-empty
sets, there is a functionf : I 7→ ∪i∈IAi such thatf(i) ∈ Ai ∀i.

This is different from the other rules that are used to build sets because it claims
the existence of an object which is not necessarily specifieduniquely.

Therefore it is sometimes interesting to see if a proof depends on the axiom of
choice.

Note that the axiom of choice follows from the other axioms for finite sets but not
for infinite ones. Furthermore it is not possible to deduce Axiom of Choice for infinite
sets from the other axioms(?).

From Zorn’s lemma we can deduce the axiom of choice. Given a family {Ai}i∈I ,
define a partial choice function (PCF)f : J 7→ ∪i∈IAi with f(i) ∈ Ai ∀i ∈ J for
someJ ⊆ I. Order partial choice functions withf ≤ g iff Jf ⊆ Jg and f = g on
Jf . Then the set of all PCFs is a poset on which we can apply Zorn’slemma to find a
maximal PCF.

Zorn’s lemma was hard to prove because Bourbaki-Witt was hard, not because the
Axiom of Choice was used.

Furthermore Zorn’s lemma is easy to prove from the Axiom of Choice using well-
ordering and ordinals (chapter 6).
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Chapter 5

Predicate logic

Observation 5.1. “The completeness theorem is an absolute highlight of all ofmath-
ematics. It’s brilliant” - Dr Leader

Definition 5.2 (Arity) . The number of arguments to a function is its arity.

Definition 5.3 (Group). A group is a setA with functionsm : A2 7→ A, i : A 7→ A, e :
A0 7→ A.

[Associativity](∀x, y, z)(m(x,m(y, z)) = m(m(x, y), z) (5.1)

[Identity](∀x)(m(x, e) = x ∧ m(e, x) = x) (5.2)

[Inverse](∀x)(m(x, i(x)) = e ∧ e = m(i(x), x)) (5.3)

Definition 5.4 (Poset). A poset is a set A with a relation≤⊆ A2. Conveniently≤ (x, y)
is writtenx ≤ y.

[Reflexivity](∀x)(x ≤ x) (5.4)

[Anti − symmetry](∀x, y)((x ≤ y ∧ y ≤ x) ⇒ (x = y)) (5.5)

[Transitivity](∀x, y, z)((x ≤ y ∧ y ≤ z) ⇒ (x ≤ z)) (5.6)

Definition 5.5 (LanguageL, functionsΩ, predicateΠ, arity functionα). Let the set of
functionsΩ and predicatesΠ be distinct sets, and let the arity function beα : Ω∪Π 7→
N. Then the languageL = L(Ω,Π, α) is the set of all formulae.

Example 5.6. For groups,Ω = {m, i, e},Π = ∅. For posets,Ω = ∅,Π = {≤}.

Definition 5.7 (Term). A term is a subset of strings of symbols from the alphabetΩ∪Π.

1. Every variable is a term(x0, x1, · · · ).

2. If f ∈ Ω, α(f) = n andt1, · · · , tn are terms thenf(t1, · · · , tn) is a term.

Observation 5.8. Note that the termf(t1, · · · , tn) is not the value of the functionf
with these arguments. It is just a string. To emphasize this you can write itft1, · · · , tn.

15
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Definition 5.9 (Atomic formula). An atomic formula is one of

1. ⊥.

2. (s = t) if s, t are terms.

3. φ(t1, · · · , tn) if φ ∈ Π andα(φ) = n andt1, · · · , tn are terms.

Definition 5.10 (Formula). 1. Atomic formulae are formulae.

2. If p andq are formulae then so is(p ⇒ q).

3. If p a formula andx a variable then(∀x)p is a formula.

Definition 5.11 (Shorthands).

¬p (p ⇒ ⊥) “not p”
p ∨ q ((¬p) ⇒ q) “p or q”
p ∧ q ¬(p ⇒ (¬q)) “p and q”
(∃x)p ¬(∀x)(¬p) “exists x such that p”

Definition 5.12(Free and bound variables). An occurrence of a variablex in a formula
is free if it is not within the brackets of a “∀x”. Otherwise it is bound.

Definition 5.13(Sentence). A sentence is a formula with no free variable (for example
the axioms for groups and posets).

Definition 5.14 (L-structure). LetL = L(Ω,Π, α) be a language. AnL-structure is a
non-empty setA, for eachf ∈ Ω a functionfA : Aα(f) 7→ A and for eachφ ∈ Π a
subsetφA ⊆ Aα(φ).

Example 5.15. L the language of groups: anL-structure is a setA with functions
mA : A2 7→ A, iA : A 7→ A, eA ∈ A.

L the language of posets: anL-structure is a non-empty set with a relation≤A⊆
A2.

Definition 5.16(Closed term). A closed term is a term with no variables. For example
m(e, i(e)), notm(x, i(x)).

Definition 5.17 (Interpretation of a closed term). The interpretation of a closed term
in an L-structureA written tA ∈ A is defined inductively. Iff ∈ Ω, α(f) = n and
t1, · · · , tn closed terms thenf(t1, · · · , tn)A = fA(t1A

, · · · , tnA
).

Note that ifc is constant symbol thencA is already defined.

Definition 5.18(Interpretation of a sentence). For a sentencep ∈ L and anL-structure
A the interpretation ofp in A is apA ∈ {0, 1} defined inductively

1. ⊥A = 0

2. For closed termss, t (s = t)A =

{

1 if sA = tA

0 otherwise
.

3. For φ ∈ Π, α(φ) = n and closed termst1, · · · , tn set

φ(t1, · · · , tn) =

{

1 if(t1A
, · · · , tnA

) ∈ φA

0 otherwise
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4. For sentencesp, q set(p ⇒ q)A =

{

0 if pA = 1, qA = 0

1 otherwise
.

5. ((∀x)p)A =

{

1 if for all a ∈ A havep[ā/x]A = 1

0 otherwise

where we extendL to L′ by adding a new constant symbolā and makeA an
L′-structure by settinḡaA = a and for any termt, p[t/x] is the formula obtained
by replacing each free occurrence ofx with t.

Observation 5.19. “Now forget all this nonsense and think of it only as in the original
idea.” - Dr Leader.

Definition 5.20 (Truth, models, holds). If pA = 1 we sayp holds inA or p is true in
A or A is a model ofp writtenA |= p.

Definition 5.21 (Theory, tautology). For a setT of sentences (a theory) sayA is a
model ofT writtenA |= T if A |= p ∀p ∈ T .

For T a theory,p a sentence, sayT entailsp written T |= p if every model ofT is
a model ofp.

If ∅ |= p we sayp is a tautology.

Observation 5.22.What is called in propositional logic a valuation is like in predicate
logic an interpretation.

Definition 5.23(Axiomatize, axioms). Say that the members of a theoryT are axioms,
and that the theory axiomatizes the things which are models of it.

Example 5.24(Theory of groups). LetL be the language of groups and let
T = {(∀x, y, z)(m(x,m(y, z)) = m(m(x, y), z),

(∀x)(m(x, e) = x ∧ m(e, x) = x),
(∀x)(m(x, i(x)) = e ∧ e = m(i(x), x))}

Then anL-structureA is a model ofT iff A is a group.T axiomatizes the class of
groups.

Suppose we change the third axiom to be just(∀x)(m(x, i(x)) = e) to produceT ′.
DoesT ′ axiomatize the class of groups? (Think about it but the answer is yes).

Example 5.25(Theory of posets). LetL = language of posets and letT = {(∀x, y)((x ≤
y ∧ y ≤ x) ⇒ (x = y)), (∀x)(x ≤ x), (∀x, y, z)(((x ≤ y) ∧ (y ≤ z)) ⇒ (x ≤ x))}.
Then a model forT is precisely a poset.

Example 5.26(Theory of fields). LetΩ = {+,×,−, 0, 1}. Π = ∅. For T take

1. Abelian group under+,−, 0

2. Associative

3. Commutative

4. Distributive over+

5. ¬(0 = 1)

6. (∀x)((¬(x = 0)) ⇒ ((∃y)(x × y = y × x = 1))
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ThenT axiomatizes the class of fields.

Example 5.27(Theory of graphs). Language ofΩ = ∅ andΠ = {∼}. T = {(∀x)(¬(x ∼
x)), (∀x, y)((x ∼ y) ⇒ (y ∼ x))}.

Then anL-structure onG is aT -model iffG is a graph.

Observation 5.28. This is called first-order logic. We can qualify over elements but
not over subsets. For example we cannot say “for all subgroups ofA”.

Observation 5.29. Could have an alternative language for groups withΩ = {m, e}
and third element of the theory being(∀x)(∃y)(m(x, y) = e ∧ m(y, x) = e).

Observation 5.30.Many natural theories haveT infinite. For example, we have fields
of characteristic zero.L language of fields.T = axioms of a field, with¬(1 + 1 =
0),¬(1 + 1 + 1 = 0) etc.

Observation 5.31. Fields of non-zero characteristic.L language of fields,T axioms
for a field. Can we axiomatize fields of charactistic6= 0? (Exercise.)

5.1 Proofs

Definition 5.32 (Logical axioms). Three old ones, two for= and two for∀.

1. p ⇒ (q ⇒ p) for any formulaep, q.

2. (p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ⇒ (p ⇒ q)) for any formulaep, q, r.

3. (¬¬p) ⇒ p for any formulap.

4. (∀x)(x = x) for any variablex.

5. (∀x, y)((x = y) ⇒ (p ⇒ p[y/x])) wherex, y variables,p a formula in whichy
does not occur bound.

6. ((∀x)p) ⇒ p[t/x] wherex is a variable,p a formula, t a term with no free
variable occurring that is bound inp.

7. ((∀x)(p ⇒ q)) ⇒ (p ⇒ (∀x)q) wherex is a variable,p, q formulae withx not
occurring free inp.

Definition 5.33 (Rules of deduction, modus ponens and generalization). Modus po-
nens. Fromp, p ⇒ q deduceq.

Generalization. Fromp deduce(∀x)p as long asx does not occur in any of the
premises used to provep.

Definition 5.34 (Proof). For S ⊆ L andp ∈ L a proof ofp fromS consists of a finite
sequence of lines each of which is a logical axiom or a member of S or is obtained
from earlier lines by a deduction rule.

WriteS ⊢ p if there is a proof ofp fromS.

Observation 5.35.If we allowed∅ to be anL-structure we would have a contradiction.

Theorem 5.36(Deduction theorem). Let S ⊆ L andp, q ∈ L. ThenS ⊢ (p ⇒ q) iff
S ∪ {p} ⊢ q.
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Proof. If S ⊢ (p ⇒ q) then have by modus ponensS ∪ {p} ⊢ q.
If S ∪ {p} ⊢ q then as in the first chapter we show that for each line inr in a proof

of q from S ∪ {p} in factS ⊢ (p ⇒ r).
We do this inductively. The only new case is if we have used generalization. So in

proof of q from S ∪ {p} we have
r

(∀x)r

and we know thatS ⊢ (p ⇒ r).
Note that the proof ofr from S∪{p} did not use a freex in any hypothesis, so also

our proof ofp ⇒ r from S did not use one. Therefore we can deduceS ⊢ ((∀x)(p ⇒
r)) by generalization.

If x is not free inp: deduceS ⊢ (p ⇒ ((∀x)r)) by the seventh axiom. Otherwisex
is free inp. So in our proof of(∀x)r fromS∪{p} cannot have usedp (as generalization
was used). SoS ⊢ ((∀x)r) so S ⊢ (p ⇒ ((∀x)r)) by the first axiom and modus
ponens.

Theorem 5.37(Soundness theorem). S is a set of sentences, andp a sentence. Then
S ⊢ p impliesS |= p.

Proof. Given a model ofS, p holds in this model by induction on the lines in the proof.

Theorem 5.38(Model Existence Lemma or Completeness Theorem). LetS be a con-
sistent set of sentences. ThenS has a model.

Definition 5.39 (Witness). A witness for(∃x)p is p[t/x] for a closed termt.

Proof. HaveS in languageL = L(Ω,Π). ExtendS to maximal consistentS1 ⊆ L by
Zorn’s lemma.

ThenS1 is complete (that is for anyp ∈ L eitherS1∪{p} is consistent orS1∪{¬p}
consistent. For each((∃x)p) ∈ S add a new constantc to the language to formL1 =
L(Ω ∪ C1,Π) and add the sentencep[c/x] to S1 to formT1.

ThenT1 is consistent.T1 has witnesses forS1.
Now extendTn to a completeSn+1 and continue inductively.
Let S̄ = ∪∞

n=1Sn in languagēL = L(Ω ∪ C1 ∪ C2 ∪ · · · ,Π).
Claim. S̄ consistent. Proof of claim. SupposeS̄ ⊢ ⊥. Then some finiteS′ ⊆ S̄ has

S′ ⊢ ⊥ whence someSn ⊢ ⊥. Contradiction.
Claim. S̄ complete. Proof of claim. For any sentencep ∈ L̄ havep ∈ Ln for some

n asp mentions only finitely many symbols. ButSn+1 complete in languageLn so
Sn+1 ⊢ p or Sn+1 ⊢ (¬p). But S̄ ⊇ S. Done.

Claim. S̄ has witnesses. Proof of claim. Basically the same as for consistency.
For closed termss, t ∈ L̄ says ∼ t if S̄ ⊢ (s = t), clearly an equivalence relation.

Write [t] for equivalence class oft.
Let A = {[t] : t a closed term of̄L}.
For eachf ∈ Ω(L̄) with arityn andt1, · · · , tn closed terms, setfA([t1], · · · , [tn]) =

[f(t1, · · · , tn)]. (Clearly well defined.)
For eachφ ∈ Π(L̄) with arityn andt1, · · · , tn closed terms, setφA([t1], · · · , [tn]) =

{([t1], · · · , [tn]) ∈ An : S̄ ⊢ φ(t1, · · · , tn)}. (Clearly well defined.)
To show thatA is a model forS we will show that for any sentencep ∈ I we have

pA = 1 iff S̄ ⊢ p. This is an easy induction.
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1. s = t. S̄ ⊢ (s = t) iff s ∼ t iff sA = tA iff [s] = [t] iff (s = t)A = 1.

2. φ(t1, · · · , tn) similarly.

3. ⊥. S̄ 6⊢ ⊥ and⊥A = 0.

4. (p ⇒ q). S̄ ⊢ (p ⇒ q) iff S̄ ⊢ p andS̄ 6⊢ q (asS̄ is complete). By induction
hypothesispA = 0 or qA = 1 iff (p ⇒ q)A = 1.

5. (∃x)p. S̄ ⊢ (∃x)p iff S̄ ⊢ p[t/x] or some closed termt, sop[t/x]A = 1 by
induction hypothesis, equivalently(∃x)p holds inA (sinceA is the set of all
closed terms quotiented).

Corollary 5.40 (Adequacy theorem). LetS be a theory andp a sentence. ThenS |= p
impliesS ⊢ p.

Proof. If S |= p thenS ∪ {¬p} |= ⊥ impliesS ∪ {¬p} ⊢ ⊥. So by the deduction
theoremS ⊢ (¬¬p) soS ⊢ p.

Theorem 5.41(Gödel’s Completeness Theorem, the completeness theorem of first or-
der logic). S a theory,p a sentence. ThenS ⊢ p iff S |= p.

Proof. By adequacy and soundness.

Corollary 5.42 (Compactness theorem). S a theory. If every finite subset ofS has a
model then so doesS.

Proof. Trivial if we replace “has a model” with “is consistent”.

Corollary 5.43 (Upward L̈owenheim-Skolem theorem). Let S be a theory with an
infinite model. ThenS has an uncountable model.

Proof. Add to the language uncountably many new constants, say{ci}i∈I . Let S′ =
S ∪ {¬(ci = cj) : i, j ∈ I, i 6= j}.

We want a model forS′. But every finiteF ⊂ S′ certainly has a model sinceF
only mentions finitely many of theci. So by compactness the infinite model forS′

exists, and it is also a model forS.

Observation 5.44. The same trick of adding constantsc1, · · · shows that no set of
sentences (in the language of groups, for example) can axiomatize (i.e. have as a
model) the class of finite groups.

In other words, “finiteness is not a first order property”. Equivalently any theory
that has arbitrarily large finite models must have an infinitemodel (called “overspill”).

Corollary 5.45 (Downward L̈owenheim-Skolem theorem). Let S be a consistent the-
ory in a countable language (that isΩ,Π countable). ThenS has a countable model.

Proof. The model constructed in the proof of the model existence lemma was maximal
and countable.
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5.2 Peano Arithmetic

Definition 5.46 (Language of Peano arithmetic). Ω = {0, s,+,×} wheres is the
successor function.

Definition 5.47 (Axioms of Peano Arithmetic). 1. (∀x)(¬(s(x) = 0))

2. (∀x, y)((s(x) = s(y)) ⇒ (x = y))

3. (∀y1) · · · (∀yn)((p[0/x] ∧ (∀x)(p ⇒ p[s(x)/x])) ⇒ (∀x)p), that is, induction
with parameters(∀y1) · · · (∀yn) for free variables inp.

4. (∀x)(x + 0 = x)

5. (∀x, y)(x + s(y) = s(x + y))

6. (∀x)(x × 0 = 0)

7. (∀x, y)(x × s(y) = (x × y) + x)
The first three axioms are sometimes called weak Peano Arithmetic.

Observation 5.48. We might have first guessed that the induction axiom should have
been(p[0/x] ∧ (∀x)(p ⇒ p[s(x)/x])) ⇒ (∀x)p. But this is not how we do induction
in real life.

Definition 5.49 (Axiom scheme). The induction axiom is in fact a different axiom for
eachp. An axiom like this specifying an infinite set of axioms is sometimes called an
axiom scheme.

Observation 5.50.PA has an infinite model (N) so by the Upward-L̈owenheim-Skolem
theorem PA has an uncountable model which is therefore notN. But we would likeN
to be characterized uniquely by these axioms. The problem isthat the induction axiom
is not powerful enough - it only refers to countably many subsets ofN (those defined
by ap) whereas normal induction refers to all subsets.

Therefore induction is not a first order property.


